HI-RES RAPID REFRESH (HRRR) Initial Implementation V1.0.1

EMC Change Configuration Board August 6, 2014

Presented by: Geoff Manikin EMC

Collaborators: Curtis Alexander, Stan Benjamin, Steve Weygandt, David Dowell, Eric James, Ming Hu, Tanya Smirnova, John Brown, Joe Olson, and the rest of the ESRL/GSD crew

Geoff DiMego EMC

Jianbing Yang, Becky Cosgrove, Justin Cooke, Carissa Klemmer, Boi Vuong, Chris Magee NCO

Jim Taft, John Michalakes, Jim Abeles IBM

Charter Overview

- This project is an NWS and NCEP Annual Operating Plan (AOP) milestone for Q4 FY2014
- Implementation scheduled for 23 September 2014
- Hi-Res Rapid Refresh description
 - Used by SPC, AWC, WPC, FAA, NWS offices and others for details short-range forecasts, especially convective evolution
 - 24 cycles/day each run out to 15 hours
 - No cycling

Rapid Refresh and HRRR NOAA hourly updated models

13km Rapid Refresh (RAP) (mesoscale)

V2 in ops: 2/25/14

3km HRRR (storm-scale)

High-Resolution
Rapid Refresh
Scheduled NCEP
Implementation Sept 2014

We have the RAP – why do need the HRRR?

- Increased resolution of basic fields like temperatures/winds/visibility, etc to resolve mesoscale features
- Explicitly resolves convection, allowing for storm-scale structure; shows skill at predicting storms with strong rotation, bow echoes, etc.
- Provides hourly updates at high resolution
- Will provide high-resolution 1st guesses to RTMA/URMA

High Impact Prediction Needs: Higher Resolution Models

High Impact Prediction Needs: Higher Resolution Models

07 June 2012 5 PM EDT Reality

3-km HRRR
Explicit
Convection 6 hr forecast

13-km RAP
Parameterized
Convection 6 hr forecast

Aircraft must
Navigate Around
Thunderstorms

Accurate Storm
Structure

Accurate Estimate of Permeability

No Storm Structure

No Estimate of Permeability

Hurricane Arthur

Why run the HRRR at NCEP?

- GSD version has a significant time lag often completes over 2 hours after the synoptic start time; NCEP version F00 available 44 minutes past the start time, with final products available 83 minutes after start time
- GSD must often truncate or even cancel cycles
- GSD runs subject to jet outages
- GSD can put more time into model development instead of maintaining HRRR data feed and web site with graphics
- Generate bufr and gempak data
- Get data into AWIPS

Control of the contro

HRRR Availability

HRRR 12 hr fcst availability Includes all missed/incomplete runs

Jet (HRRR primary)

HRRR Basic Overview

- Runs every hour (24/day)
- Uses previous hour's post-digital filter RAP analysis interpolated from 13 km to 3 km to initiate pre-forecast period
- Uses previous hour's RAP forecast for boundary conditions (01/13z HRRR uses 2-hr old RAP due to 00/12z RAP having later start time)
- Runs a 1-hr spin-up forecast, using temperature tendencies obtained from processing radar data every 15 minutes to help properly initialize ongoing precipitation
- Runs a 3 km GSI after spin-up forecast to assimilate new data and a separate GSI to assimilate hydrometeor obs
- Model forecast is integrated out to 15 hours
- Full post-processing is done for every forecast hour; subset of fields is postprocessed every 15 minutes
- Bufr output and gempak data generated for each forecast hour; gempak files also generated for the smaller sub-hourly data sets

HRRR Initialization from RAPv2

Structure – Part 1: Before the Forecast

- Make boundary conditions: 10 min (not needed until free
- Process cloud data: < 1 min ←
- Generate temp. tendencies: 2.5-3 min ←
- 1-hr spinup forecast: 5-6 min
- GSI (analysis): 5-6 min

forecast)

 $4 \min + 3 \min + 5 \min + 6 \min = 18 \min$

Simultaneous

RESOURCES – allocated ~80 nodes

- Interpolation of RAP guess: 6 nodes
- Process radar data: 4 min: 4 nodes
- Make boundary conditions: 6 nodes
- Process cloud data: 1 node
- Generate temp. tendencies: 1 node
- 1-hr spinup forecast: 75 nodes
- GSI (analysis): 30 nodes

3 minute overlap between the spinup forecast and the boundary processing

HRRR Pre-Forecast Hour

Temperature Tendency (i.e. Latent Heating) = f(Observed Reflectivity)

LH specified from reflectivity observations applied in four 15-min periods

NO digital filtering at 3-km

Reflectivity observations used to specify latent heating in previous 15-min period as follows:

- Positive heating rate where obs reflectivity ≥ 28 dBZ over depth ≥ 200 mb (avoids bright banding)
- Zero heating rate where obs reflectivity ≤ 0 dBZ
- Model microphysics heating rate preserved elsewhere

$$LH(i,j,k) = \mathcal{E}_{\dot{\mathcal{C}}} \frac{1000}{p} \dot{\mathcal{C}}^{R_d/c_p} \frac{(L_v + L_f)(f[Z_e])}{t * c_p}$$

LH = Latent Heating Rate (K/s)

p = Pressure

 L_v = Latent heat of vaporization

L_f = Latent heat of fusion

R_d = Dry gas constant

 c_p = Specific heat of dry air at constant p

 $f[Z_e]$ = Reflectivity factor converted to rain/snow condensate

t = Time period of condensate formation (600s i.e. 10 min)

60 -45 -30 -15 0 Model Pre-Forecast Time (min)

Why use almost 20 minutes to run a 1-hr spin-up?

HRRR 2013 3-km GSI HM Analysis

HRRR 2013 3-km GSI Data Assim

Statistical Retrospective Comparison
30 May - 04 June 2012 (55 matched runs)
3-km grid ≥ 35 dBZ
Eastern US

Improved 0-4 hr convection

Structure – Part 2: Forecast and Products

- 15-hr model forecast: ~39-40 min
- Simultaneous hourly post-processing + smartinit: ~7
 min each
- Simultaneous hourly wrfbufr: 1-2 min each
- Simultaneous subhourly post-processing: 2 min each
- Sounding post (bufr): 2 min
- Gempak: runs alongside post manager

RESOURCES – allocated ~80 nodes

- 15-hr model forecast: 70 nodes
- Simultaneous hourly post-processing: 2 nodes each
- Simultaneous hourly wrfbufr: 1 node each
- Simultaneous sub-hourly post-processing: 2 nodes each
- Sounding post (bufr): 1 node (shared)
- Gempak: 1 node (shared)

- Maximum overlap is 3 hourly post jobs, 2 subhourly post jobs, the gempak job, and 1 wrfbufr job for a system total of 82 nodes
- Efforts to further speed up forecast job were unsuccessful

POLICY for "LATE" RUNS

- NCEP HRRR completes in ~63 minutes (forecast job is finished by ~57 minutes)
- By the 66 minute mark, the next hour's 1-hr spin-up forecast needs all of the nodes
- When the current hour's spin-up forecast is ready to begin, if the previous hour's free forecast has not yet reached F14, the current hour's cycle will be canceled
- This scenario has been rare during testing, occurring only when there are significant system glitches

Validation with ESRL HRRR (Zeus)

DEPENDENCIES

UPSTREAM: RAP, RAP obs processing, RAP "early" 00/12z

obs processing

DOWNSTREAM: RTMA (eventually), HRRRE-TL (eventually)

Implementation requires following enhancements:

1. Implementation of corrected g2tmpl library

DEVELOPMENT TESTING

- CONUS HRRR run at GSD for 4+ years
- Built at EMC Jan-May 2014
- Using 2013 version except for bug fix to address cold bias over snow pack
- Issue with discontinuity involving terrain at boundaries resolved in early July
- Only other crashes were caused by configuration settings suggested by IBM – were able to speed up forecast by 3 minutes, but occasional crashes occurred
- NCO parallel running stably since early July only changes since have been to post-processing
- 30-day evaluation to begin 8/11

PROPOSED EVALUATION TEAM

Organization	Recommended	Optional (nice to have)
NCEP Centers	EMC, NCO	
NCEP Service	WPC, SPC, AWC	OPC, NHC
Centers		
NWS Region /	ER, CR, SR, WR	
WFO		
Other NWS or		
NOAA		
components		
External		
Customers /	FAA	
Collaborators		

GSD has set up web site to provide graphics from NCEP parallel run

PRODUCTS

For each forecast hour (16), generate

- 3 km file with data on pressure levels 350 MB (each file)
- 3 km file with data on native levels 545 MB
- 3 km file with mostly 2-D (surface) data 82 MB
- 2.5 km NDFD file for AWIPS 96 MB
- bufr sounding file 22 MB gempak file 210 MB

16.4 GB per cycle / 400 GB per day gempak files add 3.3 MB per cycle / 80 GB per day

For every 15 minutes, generate

- 3 km file with very limited 2-D (surface) data 22 MB
- Time labels are in minutes
- Cat 15/30/45/60 past hour into a single file 75 MB
- gempak file 71.2 MB

1.05 GB per cycle / 25.2 GB per day gempak adds 1.14 GB/cycle / 27.4 GB per day

Initial Analysis of Product Volume

Disk Usage	Current Production	Expected New Production	Actual New Production
IBM Disk	-	1.6 TB/day	-
IBM Tape	-	TDB	-
NCEP FTP Server	-	425 GB/day	-
NWS FTP Server	_	Same?	-

Observed radar reflectivity – 2100 UTC 20 May 2013

Preview of NCEP RAPv3/HRRRv2

Improved 2-m 12 hr temperature forecasts with reduction of warm bias Eastern US Time Series

BIAS (Forecast – Obs)

RMSE

- --/-- Developmental ESRL RAPs with DA and model changes (candidates for final RAPv3)
- -- Primary ESRL RAP with initial RAPv3 code
- -- Operational NCEP RAPv2

Preview of NCEP RAPv3/HRRRv2

Improved 2-m 12 hr dewpoint forecasts with reduction of dry bias Eastern US Time Series

BIAS (Forecast – Obs)

RMSE

- --/-- Developmental ESRL RAPs with DA and model changes (candidates for final RAPv3)
- -- Primary ESRL RAP with initial RAPv3 code
- -- Operational NCEP RAPv2

Hi-Resolution Rapid Refresh v1.0.0

Project Information and Highlights

Y

Scheduling

<u>Lead:</u> Geoff DiMego,/Geoff Manikin EMC and Chris Magee, NCO

Scope:

- 1. Initial version of 3 km Hi-Res Rapid Refresh
- 2. Similar to RAP but allows explicit convection
- 3. Initialized from previous hour's RAP analysis interpolated to 3 km. Radar data assimilated every 15 minutes to allow a one-hour "spinup" forecast, followed by a final 3 km GSI.
- 4. Output generated every 15 minutes of forecast

Expected Benefits:

1. Hourly hi-resolution forecasts of convective evolution and structure along with various parameters relevant to severe storm, aviation, and winter weather forecasting

Milestone (NCEP)	Date	Status
EMC testing complete	6/30/2014	COMPLETED
Final code submitted to NCO	7/7/2014	COMPLETED
Technical Information Notice Issued	8/1/2014	COMPLETED
EMC CCB Approval	8/6/2014	
Parallel testing begun in NCO	7/16/2014	COMPLETED
IT testing begins	8/11/2014	
IT testing ends	8/18/2014	
Real-time evaluation begins	8/11/2014	
Real-time evaluation ends	9/10/2014	
Management Briefing	9/18/2014	
Implementation	9/23/2014	

Issues/Risks

<u>Issues:</u> no margin for error with 30-day evaluation period <u>Risks:</u> any clock reset or CWD will push this to Q1FY15

Mitigation: lots of praying

Finances

Associated Costs:

Funding Sources:

